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Generation of zonal flows by interchange modes in a plasma
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Abstract. The generation of zonal flows by flute-like interchange modes in a nonuniform magnetoplasma is
considered. The guiding center particle drifts are then used to derive a system of coupled mode equations.
The latter are Fourier analyzed to obtain a nonlinear dispersion relation, which exhibits the excitation of
zonal flows by the ponderomotive force of the interchange modes. The growth rate of the parametrically
driven zonal flows is obtained.

PACS. 52.25.Vy Impurities in plasmas – 52.35.Mw Nonlinear phenomena: waves, wave propagation,
and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.) –
52.35.Ra Plasma turbulence

Recently, several authors [1,2] investigated the excitation
of zonal flows [3–6] and streamers by low-frequency (in
comparison with the ion gyrofrequency ωci) interchange
modes in plasmas containing unfavorable curvatures of the
magnetic field with anti-parallel density gradients, which
are common in laboratories [7–11] and in space [15]. Das
et al. [1] presented detailed numerical and computational
studies of zonal flows and streamers associated with mag-
netic curvature driven Rayleigh-Taylor (R-T) instabilities,
while Andrushchenko et al. [2] considered the generation
of large scale zonal flows by incoherent R-T modes.

A zonal flow is defined as an azimuthally symmet-
ric two-dimensional perturbation with a finite radial scale
2π/qr which is significantly larger than the scale 2π/kr of
its drivers (e.g. interchange modes), where qr and kr are
the radial wave numbers of long wavelength zonal flows
and short wavelength drivers, respectively. On the other
hand, streamers have short poloidal extent and are ra-
dially elongated structures. Both zonal flows and stream-
ers, which are experimentally observed [7–11] in tokamaks,
pinches and stellarators, are supposed to be excited by
drift and other waves [4,12,13], and they seem to play a
detrimental role in regulating turbulent transport [14].

In this paper, we consider the nonlinear excitation of
zonal flows by marginally stable coherent R-T or inter-
change modes in a nonuniform magnetoplasma containing
inhomogeneous magnetic field (∂B0/∂r) and equilibrium
density (∂n0/∂r) gradients in the radial direction, where
ẑB0 is the equilibrium magnetic field and n0 is the unper-
turbed plasma number density. In this nonuniform mag-
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netic field, the ions have an equilibrium azimuthal drift Vg

due to the gravity force. The interchange modes are two-
dimensional electrostatic disturbances containing signifi-
cant density fluctuations, in contrast to the zonal flows
which are purely damped (due to the ion gyroviscosity)
flute-like convective cells accompanying insignificant den-
sity perturbations and with zero azimuthal wavenumber.

The perpendicular components of the electron and ion
fluid velocities in the presence of nonlinearly coupled low-
frequency (in comparison with ωci = eB0/mic, where e is
the magnitude of the electron charge, mi is the ion mass
and c is the speed of light in vacuum) and long wavelength
(in comparison with the ion gyroradius ρi = vti/ωci, where
vti is the ion thermal speed) interchange modes and zonal
flows are, respectively,
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where φ and ψ are the electrostatic potentials of the
interchange modes and zonal flows, respectively, ϕ =
φ+ Tin

ic
i1/en0, Tj is the temperature, Vg = θ̂Vg ≡ θ̂g/ωci

represents the equilibrium azimuthal ion drift caused
by the gravity g ≡ v2

ti/R, R is the radius of curva-
ture of the nonuniform external magnetic field, V∗ =
(cTi/eB0n0)ẑ × ∇n0 is the unperturbed ion diamagnetic
drift, µi = (3/10)νiρ

2
i represents the ion gyroviscosity,

and νi is the ion–ion collision frequency. The number
density perturbations are denoted by nj1. The electron
and ion motions are assumed two-dimensional. The super-
scripts ic and z represent the quantities associated with
the interchange modes and zonal flows, respectively. The
angular brackets denote averaging over one period of the
interchange modes.

Substituting (1) and (2) into the electron and ion con-
tinuity equations, subtracting the resulting equations and
use the quasineutrality approximation nic

i1 ≈ nic
e1, which

holds for ωpi � ωci, where ωpi = (4πn0e
2/mi)1/2 is the

ion plasma frequency, we obtain the equation for the in-
terchange modes in the presence of zonal flows. We have
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We note that the divergence of (c/B0)ẑ×∇φ·(nz
i1−nz

e1) is
much smaller (since ωpi � ωci) than the divergence of the
nonlinear ion polarization terms that are retained in (5),
where nz

i1 − nz
e1 = (1/4πe)∇2

⊥ψ represents the charge
separation effect associated with zonal flows which have
eψ/Te � (nz

i1/n0) ≡ (c/B0ωci)∇2
⊥ψ. Here ρ2

s∇2
⊥ψ � ψ,

ρs = cs/ωci is the ion gyroradius at the electron temper-
ature, and cs = (Te/mi)1/2 is the ion sound speed. The
electron density perturbation nic

e1 associated with inter-
change modes is obtained from
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where the last terms in the left-hand side of (5) and (6)
are due to the coupling between interchange modes and
zonal flows on account of the nonlinear ion polarization
drift and the ẑ × ∇ψ zonal flow coupling with the in-
terchange mode density fluctuations, respectively. In the
absence of the zonal flows, viz. without the ψ-terms, equa-
tions (5, 6) can be combined and Fourier analyzed to ob-
tain the frequency spectrum of stable interchange modes

for g∂ln(n0/B0)/∂r > 0, which is of our interest here. The
interchange mode frequency Ω is then determined from
Ω[Ω − Kθ (Vg + U∗) + iµiK

2
⊥] + ωciKnbVgK

2
θ/K

2
⊥ = 0,

where U∗ = (cTi/eB0n0)∂n0/∂r, Knb = ∂ln(n0/B0)/∂r
and Kθ and K⊥ are the theta and radial components of
the wave vector K, respectively.

On the other hand, the equation for zonal flows is ob-
tained by inserting (3) and (4) into the charge current
density equation and using Poisson’s equation. We have
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where the third term in the left-hand side of (7) repre-
sents the ponderomotive force of the interchange modes.
Equations (5–7) are the desired equations for studying the
excitation of zonal flows by large amplitude interchange
modes which are marginally stable.

The nonlinear interactions between a finite amplitude
interchange pump mode (ω0,k0) and zonal flows (ω,k)
excite upper and lower interchange sidebands (ω±,k±).
Thus, we decompose the interchange mode potential and
the density perturbation as

φ = φ0+ exp(−iω0t+ ik0 · r) + φ0− exp(iω0t− ik0 · r)
+
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where ω± = ω ± ω0 and k± = k ± k0 are the frequencies
and wave vectors of the sidebands, and the superscript 0
(±) stands for the pump (sidebands).

Inserting equations (8, 9) into equations (5, 6) and
Fourier analyzing we obtain, respectively,
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k0 · ẑ×∇(n0/B0)φ0±, (12)

where D± = ω± + iΓ± − ω∗ − ωg±, Γ± = µik
2
⊥±, ω∗ =

k± ·V∗ is the ion drift wave frequency, ωg± = kθ±Vg, p =
1 + kθ0Knρ

2
iωci/ω0, and Kn = n−1

0 ∂n0/∂r. Furthermore,
kθ0 and k⊥ are the θ and perpendicular components of
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the wave vector, respectively. In deriving (10) and (11) we
have introduced ψ = ψ̂ exp(−iωt+ik · r) and matched the
phasors.

Inserting (8) into (7) and Fourier analyzing, we have
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Combining (10), (11) and (13) we obtain
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For |ω| � Γz and k⊥0 � k⊥ we obtain from (14) the

growth rate of a purely growing (ω = iγ) instability for
k0 · k > 0. We have
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Equation (15) predicts that the growth rate of the purely
growing mode is directly proportional to the pump wave
electric field k0|φ0|.

Let us estimate the growth rate for a typical labo-
ratory plasma [10,11] with B0 ∼ 3 kG, Ti ∼ 5−10 eV,
ρi ∼ 0.05−0.1 cm, Lnb = 50 cm, and φ0 ∼ 1 V, where
L−1

nb = ∂ln(n0/B0)/∂r. For these parameters the growth
time (1/γ) is roughly ten microseconds when k⊥0 ∼
1 cm−1 and k⊥ = 0.1 cm−1.

To summarize, we have considered the nonlinear in-
teraction between marginally stable coherent interchange
modes and zonal flows in a nonuniform magnetoplasma
that contains a density gradient and an unfavorable mag-
netic curvature. We have used a two-fluid model to derive
the governing equations for two-dimensional interchange
modes and zonal flows, taking into account their nonlinear
couplings. The coupled mode equations have then been
Fourier analyzed following standard techniques [4,12,13]

to derive a general dispersion relation for parametric pro-
cesses. The dispersion relation reveals a purely grow-
ing instability due to which zonal flows are excited. An
explicit expression for the growth rate is presented. The
results of the present investigation offers a plausible mech-
anism for exciting sheared (zonal) flows in the pres-
ence of interchange mode turbulence that may exist in
low-temperature plasmas such as those in the Earth’s
ionosphere [15] as well as in tokamak edges [10] and cur-
rentless toroidal plasma devices [16]. For parameters rep-
resentative of tokamak edges [10,11], the growth time for
the zonal flow excitation is roughly ten microseconds. The
nonlinearly excited zonal flows may, in turn, control the
transport processes in those regions of the plasmas where
nonuniform magnetic fields and density gradients are in-
herently present.

This work was partially supported by the Swedish Research
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